REGISTRO PALEONTOLÓGICO DE UN PALEOLAGO CRETÁCICO DE GONDWANA COMO PROXY PARA RECONSTRUCCIONES PALEOCLIMÁTICAS

Autores/as

  • Cecilia Andrea Benavente IANIGLA - CONICET | UNCuyo https://orcid.org/0000-0002-3414-0330
  • Juan I. Balaguer-Gasull Área de Zoología, Facultad de Química Bioquímica y Farmacia - UNSL
  • Paula Guillermina Giordano Área de Zoología, Facultad de Química Bioquímica y Farmacia - UNSL https://orcid.org/0000-0001-8816-4808
  • Adriana Cecilia Mancuso IANIGLA - CONICET https://orcid.org/0000-0002-0264-3806
  • Andrea Beatriz Arcucci Área de Zoología, Facultad de Química Bioquímica y Farmacia - UNSL

DOI:

https://doi.org/10.5710/PEAPA.17.04.2023.454

Palabras clave:

Formación La Cantera, Lacustre, Lago Underfilled, Isótopos estables, Peces fósiles, Plantas fósiles

Resumen

La Formación La Cantera representa un sistema lacustre underfilled desarrollado en una cuenca extensional durante la casa cálida del Cretácico y posee un registro fósil abundante y diverso. Investigamos las condiciones paleoclimáticas para la unidad desde un enfoque multiproxy. Analizamos dos proxies: a) la composición isotópica del carbono y del oxígeno de peces Actinopterygii basales y Neopterygii y de restos de plantas; y b) la composición de los ensambles de arcillas; aportando líneas de evidencia independientes a la reconstrucción paleoclimática. Los valores obtenidos para peces de δ13C varían entre -8.4 y -1.3‰ (δ13C= χ -5.57‰; σ ± 2.25); y para δ18O varían entre -5.7 y -3.6‰ (δ18O= χ -4.33‰; σ ± 0.84); en el caso de las plantas varían entre -25.8 y -22.8‰ (δ13C= χ -25‰; σ ± 4.33). Las paleotemperaturas obtenidas a partir del δ18O para la columna de agua fueron de 23.33 a 35.80 °C. La firma isotópica del δ13C de las plantas permitió obtener la composición de δ13CCO2 de -5 ‰. Esto concuerda con la interpretación de que La Formación Cantera pudo haberse originado a partir de la depositación de sedimentos en un paleolago underfilled y con el contexto paleoclimático global del Cretácico. Los ensambles de arcillas están dominados por illita-esmectita indicando un índice de hidrólisis elevado y estacionalidad en las precipitaciones lo que apoya el calentamiento temporal del cuerpo de agua. Estos datos indican condiciones de aridez durante la existencia del paleolago La Cantera y sugieren que los proxies geoquímicos de las bases de datos paleontológicas son precisos para la reconstrucción del paleoclima local en tiempo profundo de la Formación La Cantera.

Citas

Abell, P. I., Awramik, S. M., Osborne, R. H. and Tomellini, S. (1982). Plio-pleistocene lacustrine stromatolites from lake Turkana, Kenya: Morphology, stratigraphy and stable isotopes, Sedimentary Geology, 32(1–2): 1–26, doi.org/10.1016/0037-0738(82)90011-2.

Arcucci, A. B., Prámparo, M. B., Codorniú, L., Giordano, P. G., Castillo Elías, G., Puebla, G., Mego, N., Gomez, M. and Bustos Escalona, E. (2015). Biotic assemblages from Lower Cretaceous lacustrine systems, San Luis Basin, central-western Argentina. Boletín Geológico y Minero de España, 126(1): 109–128.

Arens, N. C. and Jahren, A. H. (2000). Carbon isotope excursion in atmospheric CO2 at the Cretaceous–Tertiary boundary: Evidence from terrestrial sediments, Palaios, 15: 314–322.

Amiot, R., Wang, X., Lécuyer, C., Buffetaut, E., Boudad, L., Cavin, L. and Zhang, F. (2010). Oxygen and carbon isotope compositions of middle Cretaceous vertebrates from North Africa and Brazil: Ecological and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(2): 439–451.

Barrenechea, J. E., López-Gómez, J. and De La Horra, R. (2018). Sedimentology, clay mineralogy and palaeosols of the mid-Carnian Pluvial Episode in eastern Spain: insights into humidity and sea level variations. Journal of the Geological Society, 175: 993–1003.

Benavente, C. A., Mancuso, A. C., Cabaleri, N. G., and Gier¬lowski-Kordesch, E. H. (2015). Comparison of lacustrine successions and their paleohydrologic implications in the two sub-basins of the Triassic Cuyana rift, Argen¬tina, Sedimentology 62: 1771–1813, doi .org/10.1111/sed.12209.

Benavente, C. A., Mancuso, A. C. and Bohacs, K. M. (2019). Paleohydrogeologic reconstruction of Triassic carbonate paleolakes from stable isotopes: Encompassing two lacustrine models, Journal of South American Earth Sciences 95: 102292.

Benavente, C. A., Mancuso, A. C., Irmis, R. B., Bohacs, K. M. and Matheos, S. (2022). Tectonically conditioned record of continental interior paleoclimate during the Carnian Pluvial Event: the Upper Triassic Los Rastros Formation, Argentina. Geological Society of America Bulletin, 134(1–2): 60–80, doi.org/10.1130/B35847.1

Benavente, C. A., Mancuso, A. C. and Bohacs, K. M. (2021). Chapter 14, Reconstructing paleoenvironmental conditions through integration of paleogeography, stratigraphy, sedimentology, mineralogy, and stable isotope data of lacustrine carbonates—an example from early Middle Triassic strata of southwest Gondwana, Cuyana Rift, Argentina. In Rosen, M. R., Park-Bousch, L., Finkelstein, D. B. and Pla-Pueyo, S. (Eds.) Limnogeology: Progress, challenges and opportunities: A tribute to Beth Gierlowski-Kordesch, Springer International Publishing, pp. 471–509, doi.org/10.1007/978-3-030-66576-0_16

Bergner, A. G. N., Strecker, M. R., Trauth, M. H., Deino, A., Gasse, F., Blisniuk, P. and Dühnforth, M. (2009). Tectonic and climatic control on evolution of rift lakes in the central Kenya Rift, East Africa: Quaternary Science Reviews 28: 2804–2816

Beerling, D. J. and Woodward, F. I. (1995). Leaf Stable Carbon Isotope Composition Records Increased Water-Use Efficiency of C3 Plants in Response to Atmospheric CO2 Enrichment. Functional Ecology 9(3): 394–401.

Bessems, I., Verschuren, D., Russell, J. M., Hus, J., Mees, F. and Cumming, B. F. (2008). Palaeolimnological evidence for widespread late 18th century drought across equatorial East Africa: Palaeogeography, Palaeoclimatology, Palaeoecology 259: 107–120

Bohacs, K. M., Carroll, A. R., Neal, J. E. and Mankiewicz, P. J. (2000). Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. Lake basins through space and time: AAPG Studies in Geology 46: 3–34.

Bowen, G. J. and Wilkinson, B. (2002). Spatial distribution of δ18O in meteoric precipitation, Geology 30: 315–318

Castillo Elías, G. (2016). Aspectos paleoecológicos y sedimentológicos de la Formación La Cantera, Sierra del Gigante, Aptiano Tardío, Sierras de San Luis. Thesis Universidad Nacional de San Luis, 270 p.

Chamley, H. (1989). Clay Sedimentology. Springer, Berlin, 623 p.

Cerling, T. E., Bowen G. J., Ehleringer J. R. and Sponheimer, M. (2007). The reaction progress variable and isotope turnover in biological systems. Terrestrial Ecology, 1: 163–171.

Craig, H. (1954). Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. The Journal of Geology, 62 (2): 115–149.

Criado-Roque P., Mombrú C. and Moreno J. (1981). Sedimentitas mesozoicas. Geología de la Provincia de San Luis. Relatorio del VIII Congreso Geológico Argentino, Argentina, pp. 79–96.

Do Campo, M., del Papa, C., Nieto, F., Hongn, F. and Petrinovic, I. (2010). Integrated analysis for constraining palaeoclimatic and volcanic influences on clay–mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina). Sedimentary Geology, 228(3–4): 98–112.

Farquhar, G. D., Hubick, K. T., Condon, A. G. and Richards, R. A. (1989) Carbon isotope fractionation and plant water-use efficiency. In Rundel, W., Ehleringer, J. R. and Nagy K. A. (Eds.), Stable isotopes in ecological research, 68: 21–40. Springer.

Fetrow, A. C., Snell, K. E., Di Fiori, R. V., Long, S. P., and Bonde, J. W. (2022). How hot is too hot? Disentangling mid-Cretaceous hothouse paleoclimate from diagenesis. Paleoceanography and Paleoclimatology, 37, e2022PA004517.

Flores, M. A. (1969). El Bolsón de las Salinas en la provincia de San Luis. Jornadas Geológicas Argentinas, Abstract, 1: 311–327.

Fürsich, F. T., Singh, I. B., Joachimski, M., Krumm, S., Schlirf, M., Schlirf, S. (2005). Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): an integrated approach based on palaeoecological, oxygen isotopic, and claymineralogical data. Palaeogeography, Palaeoclimatology, Palaeoecology, 217: 289–309.

Gierlowski-Kordesch E. y Kelts K. 1994. Global geological record of lake basins. Cambridge University Press, 427 p.

Giordano, P. G. (2017). Diversity of Cretaceous continental actinopterygians from Argentina, South America. Research and Knowledge 3(2): 1–8.

Giordano, P. G.; Arratia, G. and Schultze, H. P. (2016). Scale morphology and specialized dorsal scales of a new teleosteomorph fish from the Aptian of West Gondwana. Fossil Record 19: 61–81.

Grande, L. (2010). An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei. Copeia, 10(2A): 1.

Grimes, S. T.; Mattey, D. P.; Hooker, J. J. and Collinson, M. E. (2003). Paleogene paleoclimate reconstruction using oxygen isotopes from land and freshwater organisms: the use of multiple paleoproxies. Geochimica et Cosmochimica, 67(21): 4033–4047.

Gröcke, D. R. (2002). The carbon isotope composition of ancient CO2 based on higher-plant organic matter. Philosophical Transactions of the Royal Society of London A, 360: 633–658

Huijzer, B. and Vandenberghe, J. (1998). Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science, 13(5): 391–417.

Iacumin, P.; Bocherens, H.; Mariotti, A. and Longinelli, A. (1996). Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate. Earth and Planetary Science Letters, 142(1–2): 1–6.

Kolodny, Y.; Luz, B. and Navon, O. (1983). Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth and Planetary Science Letters, 64(3): 398–404.

Leng, M. J.; Lamb, A. L.; Heaton, T. H. E.; Marshall, J. D.; Wolfe, B. B.; Jones, M. D.; Holmes, J. and Arrowsmith, A. (2005). Isotopes in lake sediments. Isotopes in palaeoenvironmental research, 147–184.

Liu, B.; Wan, W.; Xie, H.; Li, H.; Zhu, S.; Zhang, G. and Hong, Y. (2019). A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981–2015. Scientific data, 6(1): 48.

Longinelli, A. and Nuti, S. (1973). Oxygen isotope measurements of phosphate from fish teeth and bones. Earth and Planetary Science Letters, 20(3): 337–340.

Ludvigson, G.A., Joeckel, R.M., Murphy, L.R., Stockli, D.F., Gonzalez, L.A.,

Suarez, C.A., Kirkland, J.I., Al-Suwaidi, A. (2015). The emerging terrestrial record of Aptian-Albian global change. Cretaceous Research, 56: 1–24.

Michener, R. and Lajtha, K. (2008). Stable isotopes in ecology and environmental science. John Wiley & Sons, 594 p.

Moernaut, J.; Verschuren, D.; Charlet, F., Kristen, I.; Fagot, M. and De Batist, M. (2010). The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: hydrological stability and change in equatorial East Africa over the last 140 kyr: Earth and Planetary Science Letters, 290: 214–223.

Moore, D. M. and Reynolds Jr. R. C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford 337 p.

Pereira, N. S.; Sial, A. N.; Pinheiro, P. B.; Freitas, F. L. and Silva, A. (2021). Carbon and oxygen stable isotopes of freshwater fish otoliths from the São Francisco River, northeastern Brazil. Anais da Academia Brasileira de Ciências, 93: e20191050.

Petruleviĉius J., Nel A. and Sallenave S. (2010). Recent genus Notonecta (Insecta: Heteroptera: Notonectidae) in the Lower Cretaceous of San Luis, Argentina: Palaeoecological implications. International Journal of Entomology, 46:1–2.

Prámparo, M. B. (1994). Lower Cretaceous palynoflora of the La Cantera Formation, San Luis Basin: correlation with other Cretaceous palynofloras of Argentina. Cretaceous Research, 15(2): 193–203.

Prámparo, M. B. (2012). Non-marine Cretaceous palynomorph biostratigraphy of Argentina: a brief summary. Journal of Stratigraphy, 36: 213–228.

Prámparo, M. B., Vento, B., Narváez, P. L., Mego, N. and Puebla, G. G. (2018). Cretaceous climatic reconstruction from Argentina based on palynological data. Boletín Geológico Minero, 129: 615–631.

Pucéat, E., Joachimski, M. M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S. and Quesne, D. (2010). Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth and Planetary Science Letters, 298(1–2): 135–142.

Puebla, G. (2009). A new angiosperm leaf morphotype from the Early Cretaceous (Late Aptian) of San Luis Basin, Argentina. Ameghiniana, 46: 557–566.

Puebla, G., Mego, N. and Prámparo, M. (2012). Asociación de Briófitas de la Formación La Cantera, Aptiano Tardío, Cuenca de San Luis, Argentina. Ameghiniana, 49(2): 217–229.

Qu, Q., Haitina, T., Zhu, M. and Ahlberg, P. E. (2015). New genomic and fossil data illuminate the origin of enamel. Nature, 526(7571): 108–111.

Rey, K., Day, M. O., Amiot, R., Fourel, F., Luyt, J., Lécuyer, C. and Rubidge, B. S. (2020). Stable isotopes (δ18O and δ13C) give new perspective on the ecology and diet of Endothiodon bathystoma (Therapsida, Dicynodontia) from the late Permian of the South African Karoo Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109882.

Rivarola, D. and Spalletti, L. (2006). Modelo de sedimentación continental para el rift Cretácico de la Argentina central. Ejemplo de la Sierra de Las Quijadas, San Luis. Revista de la Asociación Geológica Argentina, 61(1): 63–80.

Salduondo, J., Comerio, M., Pineda, J.A., Cravero, F. and Erra, G. (2022). Palaeoclimatic and diagenetic controls based on clay mineralogy and organic matter distribution: The continental rift Cuyo Basin (Triassic), west-central Argentina. Sedimentology, 69: 2867–2896

Schultze, H. P. (2018). Hard tissues in fish evolution: history and current issues. Cybium 42(1): 29–39.

Schultze, H. P. (2016). Scales, enamel, cosmine, ganoine, and early osteichthyans. Comptes Rendus Palevol, 15(1–2): 83–102.

Schultze H. P. (1996). Morphologische und histologische Untersuchungen an Schuppen mesozoischer Actinopterygier (Übergang von Ganoid zu-Rundschuppen). Neuss Jahrbuch für Geologie und Palaontologie, 126(3): 232–314.

Singer, A. 1984. The paleoclimatic interpretation of clay minerals in sediments—a review. Earth-Science Reviews, 21(4): 251–293.

Sisma-Ventura, G., Tütken, T., Peters, S; T., Bialik, O. M., Zohar, I. and Pack, A. (2019). Past aquatic environments in the Levant inferred from stable isotope compositions of carbonate and phosphate in fish teeth. Plos one 14(7): e0220390.

Tieszen, L. ., Boutton, T. W., Tesdahl, K. G. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 32–37, https://doi.org/10.1007/BF00379558

Tütken, T., Vennemann, W., Janz, H. and Heizmann, E. P. J. (2006). Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(3–4, 14): 457–491.

Ufnar, D. F., González, L. A., Ludvigson, G. A., Brenner, R. L. and Witzke, B. J. (2004). Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming. Geology, 32(12): 1049–1052

van Hinsbergen, D. J., de Groot, L. V., van Schaik, S. J., Spakman, W., Bijl, P. K., Sluijs, A. and Brinkhuis, H. 2015. A paleolatitude calculator for paleoclimate studies. Plos one, 10(6): e0126946.

Wang, L., Scarpitta, S. C., Zhang, S. C. and Zheng, M. P. (2002). Later Pleistocene/Holocene climate conditions of Qinghai–Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments, Earth and Planetary Science Letters 203(1): 461–477.

West, J. B., Bowen, G. J., Cerling, T. E. and Ehleringer, J. R. (2006). Stable isotopes as one of nature's ecological recorders. Trends in Ecology, 21(7): 408–414.

Woolway, R. I. and Merchant, C. J. (2017). Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability: Scientific Reports, 4(7): 1–8,

Fish Base: https://www.fishbase.se/search.php

Archivos adicionales

Publicado

08/09/2023

Número

Sección

Artículos